Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chebyshev polynomial filtered subspace iteration in the discontinuous Galerkin method for large-scale electronic structure calculations.

The Discontinuous Galerkin (DG) electronic structure method employs an adaptive local basis (ALB) set to solve the Kohn-Sham equations of density functional theory in a discontinuous Galerkin framework. The adaptive local basis is generated on-the-fly to capture the local material physics and can systematically attain chemical accuracy with only a few tens of degrees of freedom per atom. A cent...

متن کامل

Self - consistent - field calculations using Chebyshev - filtered subspace iteration q

The power of density functional theory is often limited by the high computational demand in solving an eigenvalue problem at each self-consistent-field (SCF) iteration. The method presented in this paper replaces the explicit eigenvalue calculations by an approximation of the wanted invariant subspace, obtained with the help of well-selected Chebyshev polynomial filters. In this approach, only ...

متن کامل

Self-consistent-field calculations using Chebyshev-filtered subspace iteration

The power of density functional theory is often limited by the high computational demand in solving an eigenvalue problem at each self-consistent-field (SCF) iteration. The method presented in this paper replaces the explicit eigenvalue calculations by an approximation of the wanted invariant subspace, obtained with the help of well-selected Chebyshev polynomial filters. In this approach, only ...

متن کامل

Chebyshev-filtered subspace iteration method free of sparse diagonalization for DFT calculations

The Kohn-Sham equation in first-principles density functional theory (DFT) calculations is a nonlinear eigenvalue problem. Solving the nonlinear eigenproblem is usually the most expensive part in DFT calculations. Sparse iterative diagonalization methods that compute explicit eigenvectors can quickly become prohibitive for large scale problems. The Chebyshevfiltered subspace iteration (CheFSI) ...

متن کامل

Parallel self-consistent-field calculations via Chebyshev-filtered subspace acceleration.

Solving the Kohn-Sham eigenvalue problem constitutes the most computationally expensive part in self-consistent density functional theory (DFT) calculations. In a previous paper, we have proposed a nonlinear Chebyshev-filtered subspace iteration method, which avoids computing explicit eigenvectors except at the first self-consistent-field (SCF) iteration. The method may be viewed as an approach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Journal of Chemical Physics

سال: 2016

ISSN: 0021-9606,1089-7690

DOI: 10.1063/1.4964861